Introduction

to
C++

Trenton Computer Festival
May 4th & 5t 2002

Michael P. Redlich
Systems Analyst
ExxonMobil Global Services Company
michael.p.redlich@exxonmobil.com

Table of Contents

TABLE OF CONTENTS ...ttt e bbb 2
INTRODUGCT ION L.t bbb bbb bbb bbb bbb 3
EVOLUTION OF Gt bbb bbb bbb bbb 3

SOME FEATURES OF C++

T Y = o PO
Operator Overloading...................
Generic Programming..................
Exception Handling

Programming Paradigms
Some Object-Oriented Programming (OOP) Definitions

MAIN ALLFTDULES OF OOP.......cieiiiiiirecieirer sttt st b s b b e s s et b b4t b b £ e b b e £ s s b b £ £ b e b e e bbb se bbb e et et et s bt et ne s
(D F 1= W = aTor= o 1S U | K= UL o) o T
Data Abstraction
NN TEANCE ...ttt a s e bbb £ e £ AR bR bbb re kb re bbbttt
0 Y1070 o o ORI
X0 AV g1 =10 1= o) 1 | = TP
SOME CHt KEYWORDS........o ettt sttt si st sessbsess s ese s s s8££ es e R AR bbb et b b enas 7
BASIC 1/O DIFFERENCESBETWEEN C AND CH ..ottt s s 7
Sending Formatted Output to the Standard Output (St AOUL) DEVICE ..ot 7
Obtaining Formatted Input from the Standard Input (St di N) DEVICE ..o 7
CHF CLASSESttt ettt bbb es e a8 8 88 £ E R e R AR AR AR AR AR Rt 8
= = 10 0L 0o (o OO 9
PIIMAIY CONSITUCLOT S ceteeieeeietseee ettt es b ese s es s8££ R bbb ne bbbt 9
L0 o) A @0 0111 o1 o OSSR 10
CLASS INSTANTIATION weittieeeeeeeeineereereesetseesttsesseseesesseeseesa e ses s es s ese s s s se s8££ 4888k s s bbb bbb bbbt 10
DYNAMIC INSEANTIALION.....ceviecrietieeer ettt bR e bR bbbt 10
IS Lol 1 0 = g LU= LA o] oI OO OO OT OO 10
POPULAR COMPILERS ...ttt se st s bbb £ £ £ bbb s bbb bbb bbbttt 11
REFERENCES FOR FURTHER READING ..ottt ettt st bbb bbb bbbttt 11

Introduction

Thisdocument is an introduction to the C++ programming language. C++ is an extension of the C programming language,
which means that all of the C library functions can be used in a C++ application. C++ wasfinally standardized in June 1998,
but its history can be traced back almost 20 years. This document will begin with how C++ has evolved over the years and
introduce some of the language's features. Since C++ is an object-oriented programming language, it isimportant to
understand the concepts of object-oriented programming. The remainder of this document will discuss object-oriented
programming, C++ classes and how they are implemented, introduce some new keywords, and mention some basic I/0
differences between C and C++.

An example C++ application was devel oped to demonstrate the content described in this document and the C++ Advanced
Features document. The application encapsulates sports data such as team name, wins, losses, etc. The source code can be
obtained fromhtt p: //www. t cf-nj.org/ orhttp://ww. redlich.net/tcf/.

2 Evolution of C++

C++ was originally known as“ C with Classes.” Bjarne Stroustrup from AT& T Laboratories devel oped the language in 1980.
Bjarne needed to add speed to simulations that were written in Simula-67. Since C was the fastest procedural language, he
decided to add classes, function argument type checking and conversion, and other featuresto it. Around the 1983/1984 time
frame, virtual functions and operator overloading were added to the language, and it was decided that “C with Classes’ be
renamed to C++. The language became available to the public in 1985 after a few refinements were made. Templates and
exception handling were added to C++ in 1989. The Standard Template Library (STL) was developed by Hewlett-Packard in
1994, and was ultimately added to the draft C++ standard. The final draft was accepted by the X3J16 subcommitteein
November 1997, and received final approva from the International Standards Organization (1SO) in June 1998 to officially
declare C++ a standard.

Some Features of C++

C++ is an object-oriented programming (OOP) language. It offersall of the advantages of OOP by allowing the developer to
create user-defined types for modeling real world situations. However, the real power within C++ is contained in its features.
Since the scope of this document is strictly introductory, this chapter only briefly describes some of the features built-in to
thelanguage. A detailed overview of these features can be found in the C++ I ntermediate and Advanced Features
document.

Pass-By-Reference

Arguments passed to functions are strictly pass-by-valuein C. That is, only acopy of the argument is passed to afunction.

If the argument's val ue is changed within the function that received it, the change is not saved when the application returns to
the point of the function call. Large data structures passed as arguments will be copied aswell. A pointer to adata structure
isallowed in afunction parameter list, but the argument name must be preceded with the address operator (&) when it is
passed to the function. Inadvertently omitting the address operator in this case usually resulted with arun-time error and core
dump.

With pass-by-reference parameter passing, only the addr ess of the variable is passed. Any changes to the argument's value
will be saved when the application returns to the point of the function call. Pass-by-reference parameter passing is nothing
new to some programming languages such as Pascal. This feature was added to C++ so that references to data types (user-
defined or built-in) could be specified in function parameter lists. This allows passing a complex data structure as an
argument to afunction without having to precede it with the address operator.

Operator Overloading

Operator overloading allows the devel oper to define basic operations (such as+,-, /) for objects of user-defined data
types asif they were built-in datatypes. For example, aconditional expression such as:

if(sl == s2)
{

is much easier to read than

if(strcnp(sl.getStr(),s2.getStr()) == 0)
{

}
Operator overloading is often referred to as " syntactic sugar.”

Generic Programming
One benefit of generic programming isthat it eliminates code redundancy. Consider the following function:

void swap(int & irst,int &second)

{

int temp = second;
second = first;
first = tenp;

}

Thisfunction is sufficient for swapping elements of typei nt . If itisnecessary to swap two floating-point values, then the
same function must be rewritten using typef | oat for every instance of typei nt . The basic algorithm isthe same. The

only difference is the data type of the elements being swapped. Additional functions must be written in the same manner to
swap elements of any other datatype. Thisis, of course, very inefficient. The template mechanism was designed for generic

programming.

Exception Handling
The exception handling mechanism is a more robust method for handling errors than fastidiously checking for error codes.

It isaconvenient means for returning from deeply nested function calls when an exception is encountered. One of the main
features of exception handling isthat destructors areinvoked for al live objects as the stack of function calls“unwinds’ until
an appropriate exception handler isfound.

Namespaces

A namespace is a mechanism that avoids global variable name conflicts that may arise due to using various libraries from
different sources. All library functionsin the C++ standard are defined in a namespace called st d.

Default Arguments

Default arguments can be specified within parameter lists of class constructors and templates. For example, consider the
following class constructor code fragment:

Sports::Sports(string str,int win,int loss,int tie = 0)

Only thefirst three parameters of the class constructor require arguments because parameter t i e has adefault value of 0.
An object created this way might ook like:

Sports sp("Mets", 94, 68);
If adifferent valuefor t i e isrequired, the fourth argument must be supplied to override the default value. For example:
Sports sp("Jets”, 8,8,0);

will assignthevalue O tot i e. Most compilers support default arguments for class constructors however default arguments
for templatesisvery new to the standard, and are not supported by all compilers.

4 Object-Oriented Programming

Please note this chapter is the same as the corresponding Object-Oriented Programming chapter of the Introduction to
Java document.

Programming Paradigms

There are two programming paradigms:
Procedure-Oriented
Object-Oriented

Examples of procedure-oriented languages include:
- C

Pascal

FORTRAN

Examples of object-oriented languages include:
C++
SmallTalk
Eiffel.

A side-by-side comparison of the two programming paradigms clearly shows how object-oriented programming is vastly
different from the more conventional means of programming:

Procedure-Oriented Programming Object-Oriented Programming
Top Down/Bottom Up Design - ldentify objects to be modeled
Structured programming - Concentrate on what an object does
Centered around an algorithm - Hide how an object performsits tasks
| dentify tasks; how something is done - ldentify an object’s behavior and attributes

Some Object-Oriented Programming (OOP) Definitions
An abstract data type (ADT) is a user-defined data type where objects of that datatype are used through provided functions

without knowing the internal representation. For example, an ADT is analogous to, say an automobile transmission. The
car’ sdriver knows how to operate the transmission, but does not know how the transmission worksinternally.

Theinterfaceis aset of functionswithinthe ADT that allow accessto data.

Theimplementation of an ADT isthe underlying data structure(s) used to store data.

It isimportant to understand the distinction between a class and an object. The two terms are often used interchangeably,

however there are noteworthy differences. Classes will be formally introduced later in this document, but is mentioned here
due to the frequent use of the nomenclature in describing OOP. The differences are summarized below:

Class Object
Defines amodel - Aninstance of aclass
Declares attributes - Hasstate
Declares behavior - Hasbehavior
AnADT - There can be many unique

objects of the same class

Main Attributes of OOP

There are four main attributes to object-oriented programming:
Data Encapsulation
Data Abstraction
Inheritance
Polymorphism

Data Encapsulation

Data encapsulation separates the implementation from the interface. User accessto datais only allowed through a defined
interface. Data encapsulation combines information and an object's behavior.

Data Abstraction

Data abstraction defines adata type by its functionality as opposed to itsimplementation. For example, the protocol to use a
double-linked list is made public through the supplied interface. Knowledge of the implementation is unnecessary and
therefore hidden.

Inheritance

Inheritance is ameans for defining a new class as an extension of a previously defined class. A derived classinherits dl
attributes and behavior of abase class, i.e., it provides accessto all data members and member functions of the base class,
and allows additional members and member functions to be added if necessary.

The base class and derived class have an “is @’ relationship. For example,
Baseball (aderived class) isa Sport (abase class)
Pontiac (aderived class) isa Car (abase class)

Polymorphism

Polymorphism isthe ability of different objectsto respond differently to virtually the same function. For example, abase
class provides afunction to print the current contents of an object. Through inheritance, aderived class can use the same
function without explicitly defining its own. However, if the derived class must print the contents of an object differently
than the base class, it can override the base class' s function definition with its own definition. In order to invoke
polymorphism, the function’ sreturn type and parameter list must be identical. Otherwise, the compiler ignores
polymorphism.

Polymorphism is derived from the Greek meaning “many forms.” It is amechanism provided by an object-oriented
programming language, rather than a programmer-provided workaround.

Advantages of OOP
Theimplementation of an ADT can be refined and improved without having to change the interface, i.e., existing code
within an application doesn’t have to be modified to accommodate changes in the implementation.
Encourages modul arity in application development.
Better maintainability of code yielding less code “spaghetti.”
Existing code can be reused in other applications.

Some C++ Keywords

The keywords defined below are just a subset of the complete C++ keyword list.

cl ass — used for declaring/defining a class.
new— allocate storage on the free store (heap).
del et e — deallocate the storage on the free store.
newanddel et e are more robust than the C library functionsrmal | oc andf r ee.
i nl i ne —used for inline member functions.
pri vat e/pr ot ect ed/publ i ¢ —access specifiers used for data hiding which is a means of protecting data.
pri vat e —not visible outside of the class.
pr ot ect ed —like private except visible only to derived classes through inheritance.
publ i ¢ —visibleto all applications.
try/t hr ow/cat ch —used in exception handling.
fri end —declaresaclasswill full accessrightsto private and protected members of an outside class without being a
member of that class.
explicit —preventsimplicit conversion of adatatype to aparticular classthat may lead to unexpected surprises:
array::array(size_t n); createsanarray with n elements.
fl oat max(array const &a); afunctionthat usesthearray datatype.
max(m ; where misaninteger inadvertently passed to the function. A new array of m elements will be implicitly
created automatically, which is not what was intended.
vi rt ual —adeclaration specifier that invokes polymorphism on afunction.
bool /f al se/t r ue — used for Boolean logic.
bool —new datatype that can only accept the valuest r ue andf al se.
f al se — numerically zero.
t r ue —numerically one.

Basic I/O Differences Between C and C++

Sending Formatted Output to the Standard Output (st dout) Device
In C, thelibrary functionpri nt f () isavailableto display formatted output tost dout :

printf("%%d\n","The answer is: ",var);

Since C++ isan extension of C, thepri nt f () function can still be used in a C++ application. However, the overloaded |eft
shift operator (<<) directed toward the C++ library functioncout provides an easier means of sending formatted output:

cout << "The answer is: << var << "\n";

Obtaining Formatted Input from the Standard Input (st di n) Device
In C, thelibrary functionscanf () isavailableto obtain formatted input from st di n:

scanf ("oRd", &var);

Again, thescanf () function can be used in a C++ application, but the overloaded right shift operator (>>) directed away
from the C++ library function ci n provides an easier means of obtaining formatted input:

cin >> var;

C++ Classes

As mentioned earlier, a C++classis auser-defined ADT. It encapsulates a datatype and any operationsonit. A classisalso
an extension of a C structure, which isacollection of one or more variables defined under asingle name. The biggest

difference between the two is the default access to data members and member functions. By default, data members and
member functionsin aclass are private, where they are publicin astructure. An abstract classis one that contains at least

one pure virtual member function.

A basic C++ classaswell as astructure usually contains the following elements:
Constructor(s) — creates an object.
Destructor — destroys an object.
Data members— object attributes.
Member functions (methods) — operations on the attributes.

Each one of these isdemonstrated in a simple example:

cl ass Sports
L
private:
/'l private data nenbers:
char *team
int wn;
int |oss;

publi c:
/1l constructor and destructor decl arations:
Sports(char *,int,int); /1 primary constructor
~Sports(void); /] destructor

/1 public nenber functions:
char *get Team(voi d) const // constant menber function

{

return tean

int getWn(void) const // constant menber function

{

return wn;

}

void setWn(int w)

n=w

'—v—‘é-r-“-\

i nt getLoss(void) const // constant nenber function

{

return | oss;

}

void setlLoss(int I)

// constructor and destructor definitions:

Sports::Sports(char *str,int w,int |)
{
team = new char[strlen(str) + 1]; // allocate storage for type char *
strcpy(teamstr);

setWn(w);
setLoss(1);
}
Sports:: ~Sports(void)
{
del ete[] team // deall ocate storage; note use of ‘[]’
}

C++ comments begin with adouble slash (/ /). Anything after adouble slash until the end of the current lineis considered a
comment by the compiler. Ccomments(/* ... */)canstill beusedinaC++ application aswell.

Note that constructors and destructors have the same name as the class and have no return type. The destructor is
declared/defined with atilde (~) in front of its name.

Also note the use of the scope resolution operator (: :) for the constructor and destructor definitions. They were defined
outside of the class, and therefore required their fully-qualified member names so the compiler knows that these definitions
belong to the Spor t s class.

More than one constructor can be written for a particular class. The different constructor types are:
Default constructors
Primary constructors
Copy constructors

Default Constructors
A default constructor creates objects with specified default values. A default constructor added to Spor t s might look like:

Sports(void); // declaration

Sports::Sports(void) // definition
{

team = new char[8];
strcpy(team "No teant);
setWn(0);

set Loss(0);

}
The compiler will automatically generate a default constructor if one isnot explicitly defined.

Primary Constructors
A primary constructor creates objects with the argument values passed in the constructor parameter list. More than one
primary constructor may be defined for aclass. The primary constructor in Spor t s isdeclared as:

Sports(char *,int,int); /1 primary constructor

If the application requires, say, afloating-point valuein the parameter list in place of one of the integer values, then a second
constructor can be declared as:

Sports(float,char *,int); // another primary constructor

Note that the order of the parameter list has changed from the first primary constructor. Thisisto avoid ambiguity between
the two constructor declarations and definitions. The compiler will generate an error message about ambiguity between
constructor parameter listsif the order of the parametersis similar.

Copy Constructors

A copy constructor creates a copy of an object using the current object as a parameter. A copy constructor added to Sport s
might look like:

Sports(Sports const & ; // declaration

Sports:: Sports(Sports const &sp) // definition
team = new char[strlen(sp.getTeam()) + 1];
strcpy(team sp. get Team());
setWn(sp.getWn());

set Loss(sp. get Loss());
}

Class Instantiation

Classes can be instantiated both statically and dynamically. For example, consider aBasebal | classthat isderived from
Spor t s. It hasthe following constructor declaration:

Basebal | (string,int,int);

Dynamic Instantiation
An object of type Basebal | isdynamically instantiated using operator new as shown in the following statement:

Basebal | *bball = new Basebal | ("Mets", 94, 68);

This statement declaresbbal | asapointer to an object of type Basebal | containing the values" Met s", 94, and 68.
Once the object is created, any public member functions are called using the name of the pointer to the object and the pointer
indirection operator (- >). For example,

bbal | - >get Wn();

callsthe functionget W n() . Sincethe object is apointer, it must be deleted to free memory. Thisis accomplished using
operator del et e as shown in the following statement:

del ete bball;
The destructor isinvoked at this point.

Static Instantiation
An object of typeBasebal | isstatically instantiated using the following statement:

Basebal | bbal |l ("Mets", 94, 68);

10

This statement declaresbbal | asan object of type Basebal | containing the values” Met s",94, and 68. Oncethe

object is created, any public member functions are called using the name of the object and the structure dot operator (.). For
example,

bbal | . get Wn();

callsthe functionget W n() . The object remains alive until the scopein which it was created is closed. The destructor is
invoked and the object is del eted.

Popular Compilers

Some of the more commonly used compilers are listed below:

Borland C++ 5.02
Borland C++ Builder 4.0
http://ww. borl and. con!

Microsoft Visual C++ +6.0
http://ww. m crosoft.conf

Watcom C++ 11.0

Metrowerks C++ (Mac)
http://ww. met rowerks. com

g++ (UNIX)
http://ww. gnu. com

10 References for Further Reading

The references listed below are only asmall sampling of resources where further information on C++ can be obtained:

C & C++ Code Capsules (book)
Chuck Allison
ISBN 0-13-591785-9
http://ww. freshsources. com

C/C++ Users Journal (monthly periodical)
http://ww. cuj.conf

The Annotated C++ Reference Manual (book)
Margaret Ellis and Bjarne Stroustrup
ISBN 0-201-51459-1

1997 C++ Public Review Document (latest available on-line C++ standard documentation)
http://ww. mat hs. warwi ck. ac. uk/ cpp/ pub/ wp/ ht m / cd2/

11

